作者:D. I. Palade L. M. Pomârjanschi
我们对第二类$K_\nu$的修正贝塞尔函数提出了一个解析近似。该近似是从施加全局约束的指数模拟中导出的。与传统方法相比,它产生的局部和全局误差小于1%,计算时间加快了3美元订单数量。我们证明了我们的近似对于生成长程相关随机场的任务的有效性。
We propose an analytical approximation for the modified Bessel function ofthe second kind $K_\nu$. The approximation is derived from an exponentialansatz imposing global constrains. It yields local and global errors of lessthan one percent and a speed-up in the computing time of $3$ orders inmagnitude in comparison with traditional approaches. We demonstrate thevalidity of our approximation for the task of generating long-range correlatedrandom fields.
论文链接:http://arxiv.org/pdf/2303.13400v1
更多计算机论文:http://cspaper.cn/