作者:Pablo A. Cano Marina David
我们在具有$\alpha’$校正的异弦理论和广义相对论的三次曲率扩展的背景下研究了对极端Kerr黑洞的高导数校正。通过分析这些黑洞的近视界极值几何,我们能够通过广义Komar积分计算Iyer-Wald熵和角动量。在弦校正的情况下,我们获得了顺序为$\alpha’^2$的物理相关关系$S(J)$。另一方面,被选为爱因斯坦立方引力加上具有类似特征的新奇数密度的三次理论具有特殊的可积性财产,使我们能够在高导数耦合中获得精确的结果。这使我们能够在耦合中找到任意阶的关系$S(J)$,甚至可以以非微扰的方式对其进行研究。我们还将我们的分析扩展到极端Kerr-(A)dS黑洞的情况。
We investigate higher derivative corrections to the extremal Kerr black hole in the context of heterotic string theory with $\alpha’$ corrections and of a cubic-curvature extension of general relativity. By analyzing the near-horizon extremal geometry of these black holes, we are able to compute the Iyer-Wald entropy as well as the angular momentum via generalized Komar integrals. In the case of the stringy corrections, we obtain the physically relevant relation $S(J)$ at order $\alpha’^2$. On the other hand, the cubic theories, which are chosen as Einsteinian cubic gravity plus a new odd-parity density with analogous features, possess special integrability properties that enable us to obtain exact results in the higher-derivative couplings. This allows us to find the relation $S(J)$ at arbitrary orders in the couplings and even to study it in a non-perturbative way. We also extend our analysis to the case of the extremal Kerr-(A)dS black hole.
论文链接:http://arxiv.org/pdf/2303.13286v1
更多计算机论文:http://cspaper.cn/